Course Structure and Syllabus

I Year – I Semester

<table>
<thead>
<tr>
<th>Category</th>
<th>Course Title</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course I</td>
<td>Pharmaceutical Management –I (General and Personnel)</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Course II</td>
<td>Total Quality Management</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Course III</td>
<td>Drug Regulatory Affairs (National and International Aspects)</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective I</td>
<td>1. Modern Pharmaceutical Analytical Technique</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Intellectual Property Rights and Regulatory Affairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective I</td>
<td>1. Pharmacoepidemiology, Pharmacoeconomics and Pharmacovigilance</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Herbal Cosmetics Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Advanced Pharmaceutical Technology –I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Industrial Pharmaceutics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Separation Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory I</td>
<td>Modern Pharmaceutical Analytical Techniques Lab</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory II</td>
<td>Pharmaceutical Management Lab</td>
<td>25</td>
<td>75</td>
<td>--</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Seminar I</td>
<td>Seminar</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I Year – II Semester

<table>
<thead>
<tr>
<th>Category</th>
<th>Course Title</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course IV</td>
<td>Pharmaceutical Management –II (Production, Marketing, Finance and Project)</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Course V</td>
<td>Analytical Method Validation and Copyrights and Trademarks</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Course VI</td>
<td>Pharmaceutical Market Research and Analysis</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Core Elective II</td>
<td>1. Biostatistics And Research Methodology</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Screening Methods & Clinical Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective II</td>
<td>1. Stability of Drugs and Dosage Forms</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2. Nano Based Drug Delivery Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Nutraceuticals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Advanced Drug Delivery Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Advanced Pharmaceutical Technology -II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory III</td>
<td>Analytical Method Validation Lab</td>
<td>25</td>
<td>75</td>
<td>4</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory IV</td>
<td>Pharmaceutical Market Research and Analysis Lab</td>
<td>25</td>
<td>75</td>
<td>--</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Seminar II</td>
<td>Seminar</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II Year - I Semester

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive Viva-Voce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project work Review I</td>
<td>50</td>
<td>--</td>
<td>24</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II Year - II Semester

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Int. marks</th>
<th>Ext. marks</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project work Review II</td>
<td>50</td>
<td>--</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Project Evaluation (Viva-Voce)</td>
<td></td>
<td>150</td>
<td>16</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PHARMACEUTICAL MANAGEMENT-I (GENERAL & PERSONNEL)

Objective: The topics which are present in the pharmaceutical management are very much useful to the students in personality development become a perfect pharma professional.

UNIT I

UNIT II
Fundamental concepts of production, financial, personal, legal and marketing functions with special reference to Pharmaceutical Management. Introduction to budgeting, costing, accounting, auditing and budgetary control. Entrepreneurship development.

UNIT III
Understanding organizations: Meaning, process, types of organization structures and departmentation, line/staff authority, promoting organizational culture. Organizations, pharmaceutical services and functioning of hospital pharmacy, bulk drug unit, formulation unit, Ayurvedic and Unani manufacturing units and testing labs etc.

UNIT IV
Professional Managers; Tasks, responsibilities and skills needed. Leadership; Styles and managing change. Decision Making; Types, procedures, evaluation and selection of alternatives, decision making under various situations. Management information and decision support systems and time management.
Personnel Management: Job Analysis, recruitment, selection, orientation and training, performance appraisal and compensation. Retrenchment, lay off and discharge.

UNIT V
Management of Industrial Relations: Industrial disputes, settlement of disputes through various routes such as bargaining, etc. Motivational aspects, theories of motivation, group dynamics, rewards and incentives, interpersonal skills, significance of communication, its processes, measures for effective communication, conflict management. Stress management.

Outcome:
- These topics are useful for the students to know how to manage a pharma industry and its various departments viz QA, QC, RA, Production etc.
- Along with this it aids the students to develop leadership qualities, communication interpersonal skills, decisions making, motivation, organization & various managerial functions & professional skills required for a dynamic professional.
- Management helps to understand the concept of managerial control, its levels & role, importance in pharma industry.

Text and reference books
1. Marketing Management by Philip Kotler; Prentice-Hall of India Ltd., New Delhi.0
5. Management by Stoner and Freeman; Prentice Hall, New Delhi.
7. Management of Organizational Behavior, Utilizing the Human Resources by Harcey, Paul and Blanchard Kenneth; Prentice Hall of India, New Delhi.
10. Management "Global Perspective Heinz Weirich, Harold Koontz by Tata Mcgraw Hill".
TOTAL QUALITY MANAGEMENT

Objective: Total quality management constitutes very useful chapter like – good manufacturing practices, GLP, GCP, ICH etc. Which increases the knowledge of students in various quality control & regulatory aspects.

UNIT I
Concepts and Philosophy of TQM, GLP, GMP (orange guide).

UNIT II
Drug regulatory and accrediting agencies of the world (USFDA, TGA, ICH, WHO, ISO etc.)

UNIT III
Good manufacturing practices: Organisation and personnel, responsibilities, training, hygiene.
Premises: Location, design, plant layout, construction, maintenance and sanitation, environmental control, utilities and services like gas, water, maintenance of sterile areas, control of contamination.
Raw materials: Purchase specifications, maintenance of stores, selection of vendors, controls on raw materials and finished dosage forms.
Manufacture of and controls on dosage forms: Manufacturing documents, master formula, batch formula records, standard operating procedures, quality audits of manufacturing processes and facilities.
In process quality controls on various dosage forms; sterile and non-sterile, standard operating procedures for various operations like cleaning, filling, drying, compression, coating, disinfections, sterilization, membrane filtration etc.
Packaging and labelling control, line clearance, reconciliation of labels, cartons and other packaging materials.
Quality Control Laboratory: Responsibilities, good laboratory practices, routine controls instruments, reagents, sampling plans, standard test procedures, protocols, non-clinical testing, controls on animal house.
Data generation and storage, quality control documents, retention samples, records and audits of quality control facilities.
Finished products release, quality review, quality audits, batch release document.

UNIT IV
Regulatory Considerations for Pre-clinical and Clinical Evaluation: Pre-clinical requirements currently in use. Regulatory requirements of single dose and repeat dose toxicity studies. Study of specific toxicities such as mutagenicity, carcinogenicity and teratogenicity. Animal pharmacokinetics and toxicokinetics. Regulatory requirements of clinical evaluation, pharmacokinetics in man genetic polymorphism. Design and interpretation of clinical trials.
Quality assurance standards as per ISO.

UNIT V
Globalization of drug industry, present status and scope of pharmaceutical industry in India.
WHO and NABL certification, ICH guidelines for manufacturing and quality assurance of drug formulation.

Outcome: Total quality management helps the students to learn the established regulatory guidelines in GMP, GCP, GLP, USFDA, WHO, ISO etc to become a perfect budding pharmacist. It is very useful to students to acquire vast knowledge regarding the quality control aspects of different regulatory bodies as per their requirements throughout the world.

TEXT AND REFERENCE BOOKS
4. GMP by Mehra.
5. How to Practice GMP by P.P. Sharma.
8. OPPI-Quality Assurance.
9. USP.
10. Current good manufacturing practices for pharmaceuticals by Manohar A. Potdar
11. Quality assurance and quality management in pharmaceutical industry by Y. Anjaneyulu and Marayya
Objective: The topics which are present in the Drug regulatory affairs are very much useful which increases the knowledge regarding the regulatory aspects in the pharmaceutical industries.

UNIT I
A study of regulatory aspects that affect drug product design, manufacture and distribution in India with special emphasis on the detailed study of the following Acts (with latest amendments)

UNIT II
The Drugs and Cosmetics Act, 1940 and Rules there under. Recent amendments to Drugs and Cosmetic Act and other relevant rules.
Drugs (Price Control) Order in force. Loan license (contract manufacture). Certification and licensing procedures.

UNIT III
A detailed study of regulatory aspects that affect drug product design, manufacture and distribution in a developed country such as USA and in a developing country such as Brazil, Hatch Waxmann Act; Bolar Provisions and other FDA Regulations.
Regulatory aspects of pharmaceutical and bulk drug manufacture, regulatory drug analysis.

UNIT IV
Documentation related to manufacturing, cleaning methods, retention samples and records, quality control, batch release documents, distribution records, complaints and recalls.
Quality, safety and legislation for cosmetic products and herbal products.

UNIT V
Governing Regulatory Bodies across the globe.

Country Authority Submission
a. U.S Food & Drug Administration USDMF
b. Canada Therapeutic Product Directorate DMF
c. Europe
 1) European Medicines Agency (EMEA/ National Authorities) EDMF
 2) European Directorate for Quality of Medicines CEP/COS & Health Care Products
d. Product Filing
e. Responding Regulatory Deficiencies
f. Final Approval Procedure

Preparation, review and submission of Drug Master Files to Regulatory Authorities as per their specific requirements.

Outcome:
• Students will come to know the different competent regulatory authorities globally.
• Students be aware of technical aspects pertaining to the marketing authorization application (MAA)
• The regulatory guidelines and directions framed by the regulatory authorities will be helpful to place the drug products in market for marketing approvals.

TEXT AND REFERENCE BOOKS
1. Original laws published by Govt. of India.
3. Laws of Drugs in India by Hussain.
Objective: The course is designed to impart the knowledge in the field of Pharmaceutical Analysis. The various modern analytical techniques like UV-Visible, IR, NMR, Mass, GC, HPLC, different chromatographic methods and other important topics are taught to enable the students to understand and apply the principles involved in the determination of different bulk drugs and their formulation. In addition to the theoretical aspects, the basic practical knowledge relevant to the analysis is also imparted.

UNIT I
Introduction to chromatography and classification of chromatographic methods based on the mechanism of separation
a. Column Chromatography: Adsorption and partition, theory, preparation, procedure and methods of detection
b. Thin Layer Chromatography: Theory, preparation, procedures, detection of compounds
c. Paper Chromatography: Theory, different techniques employed, filter papers used, qualitative and quantitative detection
d. Counter – current extraction, solid phase extraction techniques, gel filtration

UNIT II
b. HPLC: Principles and instrumentation, solvents and columns used, detection and applications
c. HPTLC: Theory and principle, instrumentation, elution techniques and pharmaceutical applications

UNIT III
a. UV-Visible spectroscopy: Introduction, electromagnetic spectrum, absorbance laws and limitations, instrumentation-design and working principle, chromophore concept, auxochromes, Wood-Fisher rules for calculating absorption maximum, applications of UV-Visible spectroscopy
b. IR spectroscopy: Basic principles-Molecular vibrations, vibrational frequency, factors influencing vibrational frequencies, sampling techniques, instrumentation, interpretation of spectra, FT-IR, theory and applications

UNIT IV
Mass spectroscopy: Theory, ionization techniques: electron impact ionization, chemical ionization, field ionization, fast atom bombardment, plasma desorption, fragmentation process: types of fission, resolution, GC/MS, interpretation of spectra and applications for identification and structure determination

UNIT V
NMR: Theory, instrumentation, chemical shift, shielding and deshielding effects, splitting of signals, spin-spin coupling, proton exchange reactions, coupling constant(J), nuclear overhauser effect(NOE), 13CNMR spectra and its applications, 2D-NMR, COSY and applications in pharmacy

Outcome: The appreciable knowledge will be gained by the students in the Modern Analytical Techniques and can apply the theories in the Analysis of various bulk drugs and their formulations. The students will also be in a position to apply their knowledge in developing the new methods for the determination and validate the procedures.

REFERENCES:
1) Instrumental Methods of Chemical Analysis by B.K Sharma
2) Organic spectroscopy by Y.R Sharma
3) A Text book of Pharmaceutical Analysis by Kerrenth A. Connors
4) Vogel’s Text book of Quantitative Chemical Analysis by A.I. Vogel
5) Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
6) Organic Chemistry by I. L. Finar
7) Organic spectroscopy by William Kemp
8) Quantitative Analysis of Drugs by D. C. Garrett
9) Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Seth
10) Spectrophotometric identification of Organic Compounds by Silverstein
11) HPTLC by P.D. Seth
12) Indian Pharmacopoeia 2007
13) High Performance thin layer chromatography for the analysis of medicinal plants by Eike Reich, Anne Schibli
14) Introduction to instrumental analysis by Robert. D. Braun
INTELLECTUAL PROPERTY RIGHTS AND REGULATORY AFFAIRS
(Core Elective-I)

Objective: Various types of Intellectual Property Rights Patentable Subject History of Indian Patent Protection, Patent filing procedure in India, Opposition- pre-grant opposition and post-grant opposition, Patent filing procedure under PCT, advantages, patent search and literature and Salient features of Indian Patents are discussed in detail.

Objective:

UNIT I
Introduction, Types of Intellectual Property Rights (Patents, Trademarks, Copyrights, Geographical Indications Industrial Designs and Trade secrets), Patentable Subject Matter (Novelty, Non-Obviousness, Utility, enablement and Best mode),

UNIT II

b. Patent filing procedure in India (Patent Prosecution), Specifications (Provisional and Complete), Claims- types of claims and legal importance of claims, Grant of patent, Rights of Patentee and co-owners

c. Opposition- pre-grant opposition and post-grant opposition, Anticipation, Infringement, Compulsory Licensing, revocation of patents, and power of Controller.

d. Patent filing procedure under PCT, advantages, patent search and literature

UNIT III
b. Background, Salient Features and Impact of International Treaties / Conventions like
 1. Paris Convention, Berne convention
 2. World Trade Organization (WTO)
 3. World Intellectual Property Organization (WIPO)
 4. Trade Related Aspects of Intellectual Property Rights (TRIPS)
 5. Patent Co-operation Treaty (PCT), Mandrid Protocol

Regulatory Affairs

Unit IV
a. National Drug Regulatory requirements, National Drug Policy, Drugs and Cosmetics Act and its amendments, overview of schedules, detail study of schedule M and Schedule Y.

b. USFDA, FDA guidelines on IND, NDA and ANDA approvals, and SUPAC changes and understanding on 505 (b) (2) applications

Unit V
a. Requirement of GLP Guidance and recommendation on Dissolution and Bio-equivalence requirement. Types of ANDA filing (Para I, II, III, IV filing). Exclusivities (NCE, NS, NP, NDF, PED, ODE, PC)

b. ICH objectives and Guidelines- stability testing, WHO guidelines, ISOs- Production design, certification. ICH 8(QbD), ICH Q9 and ICHQ10

Outcome: The clear information about the patent laws, intellectual property rights and drug regulation in India and abroad is gained by the students

RECOMMENDED BOOKS:
1. Research Methodology concepts and cases by Depak Chawla, Neena Sondhi
4. Original Laws Published by Govt. of India
5. Protection of Industrial Property rights by P.Das and Gokul Das
6. Law and Drugs, Law Publications by S.N. Katju
7. Laws of drugs in India, Hussain
10. Drugs and Cosmetics act by Vijay Malik
12. fda.org,wipo.int,patentlawlinks.com, hc-sc.gc.ca,ich.org,cder.org
13. Current good manufacturing practices for pharmaceuticals by Manohar A Potdar
PHARMACOEPIDEMOLOGY, PHARMACOECONOMICS AND PHARMACOVIGILANCE
(Optional Elective –I)

Objective: This course is designed to impart knowledge and skills in epidemiology, economics and vigilance of various diseases. This will enable the students to understand cost effectiveness in the management of disease and ADRS.

Unit-I
Pharmacoepidemiology: Definition and scope: Origin and evaluation of pharmacoepidemiology need for pharmacoepidemiology, aims and applications.
Measurement of outcomes in pharmacoepidemiology Outcome measures and drug use measures
Prevalence, incidence and incidence rate. Monetary units, number of prescriptions, units of drugs dispensed, defined daily doses and prescribed daily doses, medication adherence measurement.

Unit-II
Concept of risk in pharmacoepidemiology, Measurement of risk, attributable risk and relative risk, time-risk relationship and odds ratio
Pharmacoepidemiological methods: Includes theoretical aspects of various methods and practical study of various methods with the help of case studies for individual methods Drug utilization review, case reports, case series, surveys of drug use, cross-sectional studies, cohort studies, case control studies, case-cohort studies, meta-analysis studies, spontaneous reporting, prescription event monitoring and record linkage system.

Unit-III
Sources of data for pharmacoepidemiological studies Adhoc data sources and automated data systems.
Selected special applications of pharmacoepidemiology Studies of vaccine safety, hospital pharmacoepidemiology, pharmacoepidemiology and risk management, drug induced birth defects.

Unit-IV
Pharmacoeconomics: Definition, history, need of pharmacoeconomic evaluations Role in formulary management decisions.
Pharmacoeconomic evaluation Outcomes assessment and types of evaluation, includes theoretical aspects of various methods and practical study of various methods with the help of case studies for individual methods: Cost – minimization, cost-benefit, cost – effectiveness, cost utility
Applications of Pharmacoeconomics, Softwares used and case studies

Unit-V
a. Scope, definition and aims of Pharmacovigilance
b. Adverse drug reactions - Classification, Mechanism, predisposing factors, causality assessment (different scales used)
c. Reporting, evaluation, monitoring and management of ADRs
d. Role of pharmacist in management of ADRs.

Outcome: At completion of this subject, the students are expected to understand risk of pharmacoepidemiology history and need of pharmacoeconomics and assessment of pharmacovigilance.

REFERENCES:
Objective: The topics helps the students to get exposed to processes involved in the manufacturing of herbal cosmetics including the skin and hair care herbal products preparation and their evaluation

UNIT I

a) Introduction, historical background and present status of Herbal cosmetics
b) Processes used in the manufacture of cosmetics-Emulsification, Mixing, compaction, Moulding, Packing. Raw materials used in preparation of herbal cosmetics
c) Machinery and Equipment for Cosmetics: Cream, Liquid, Powder and emulsion making machinery
d) Quality, safety and efficacy of Herbal cosmetics

UNIT II

Skin care Products: Method of preparation, pharmaceutical and Pharmacological evaluation procedures for various formulations like Creams, Lotions, Lipsticks, face packs. Elaborative study of five formulations under each category with regard to their composition and claims for various herbs used in them.

UNIT III

Hair care Products: Method of preparation, pharmaceutical and Pharmacological evaluation procedures for various formulations like hair dyes, creams, Lotions, Jels, oils and Shampoos. Elaborative study of five formulations under each category with regard to their composition and claims for various herbs used in them.

UNIT IV

A brief account of following herbals or herb extracts or herbal products of cosmetic importance such as *Acacia concinna* pods, Aloe Vera, Almond oil, Neem, *Citrus aurantium* peels, Henna, Turmeric, Liquorice, Olive oil, tea tree oil and wheat germ oil with special emphasis on their source, active principles and cosmetic properties.

UNIT V

a) General Principles of Quality control and standardization of cosmetics-Raw material control, Packaging material control, finished product control, Shelf testing.
b) Natural colorants : Biological Source, coloring principles, chemical nature and usage of the following Annato, Cochineal, Caramel, Henna, Indigo, Madder, Saffron, Turmeric
c) Flavors and Perfumes : Sandal wood oil, Orange oil, Lemon oil, Vanilla, Palmarosa, geranium oil

Outcome: Students will learn about the raw materials used in herbal cosmetics and get exposed to various preparations of herbal cosmetics.

REFERENCES:

1. Cosmetics- Formulation, Manufacturing and Quality control –P.P.Sharma
2. Herbal Cosmetics Hand Book- H. Panda
3. Herbal Cosmetics by P.K Chattopadhyay
4. The Complete Technology Book on Herbal Perfumes and Cosmetics by H. Panda
Objectives: Students will know the Preformulation studies, methodology, different excipients used in solid dosage forms and their evaluation. The students also know the optimization techniques and their applications in pharmaceutical industries.

UNIT 1
Preformulation studies: Goals of Preformulation, preformulation parameters, Polymorphs and Amorphous forms, selection of drugs- solubility, partition coefficient, salt forms, humidity, solid state properties, Particle Size Analysis (Laser Diffraction and Dynamic Light Scattering) drug-excipient compatibility, flow properties, format and content of reports of preformulation, preformulation stability studies (ICH)

UNIT II

UNIT III
Formulation development of solid dosage forms– II: Coating, coating machines, coating techniques in tablet technology for product development, computerization, inprocess control of tablets, formulation development and manufacture of powder dosage forms for internal use.

Microencapsulation- types, methodology, problems encountered.

UNIT IV
Formulation development of soft and hard gelatin capsules :Introduction, production and methods of manufacture, filling equipment and filling operations, formulations, finishing, special techniques, advances in capsule manufacture, machines, processing and control including pharmaceutical aspects, physical stability and packaging.

UNIT V
Optimization techniques in pharmaceutical formulation and processing: Introduction, optimization parameters, statistical design, response surface method, contour diagrams, factorial design, partial factorial design, simplex methods, mixture designs, Placket Burhan method, Box Benken method, applications in pharmaceutical formulation.

Outcome: Students shall know the preformulation parameters, ICH guidelines, drug excipients compatibility studies. Students also know about formulation and development, use of excipients in tablets, powders, capsules, micro-encapsules and coating techniques. They also know the statistical design in different formulations.

TEXT BOOKS
1. Pharmaceutics - The Science of Dosage form design by ME Aulton.
6. Pharmaceutical statistics by Bolton

RECOMMENDED BOOKS:
1. The Theory and Practice of industrial Pharmacy by Leon Lachman, Herbert A. Lieberman.
2. Remington’s Science and Practice of Pharmacy by A. Gennaro.
5. Dispensing for Pharmaceutical Students by SJ Carter.
SEPARATION METHODS
(Optional Elective-I)

Objectives: The course is designed to import knowledge in the field of various separation techniques in the context of their applications both at laboratory and industry level. The techniques such as GC, HPLC, Electrophoresis etc. Methods allow qualitative and quantitative estimations and thus demand for the development and validation of methods.

UNIT: I
i. Column Chromatography and Short column chromatography: Column packing, sample loading, column development, detection.
ii. Flash chromatography and Vacuum liquid chromatography: Objectives, optimization studies, selecting column and stationary phases, selecting suitable mobile phases, automated flash chromatography, and reverse phase flash chromatography.

UNIT-II
Sample Preparation - Analysis of drugs from formulations and biological samples including, selection of biological sample, extraction of drugs by various methods such as Liquid Liquid Extraction (LLE), Solid Phase Extraction (SPE) and Membrane filtration.

UNIT: III
i. HPLC: Principles, basic parameters Retention factor, Capacity factor, Selectivity factor, plate number, plate height, resolution, peak shapes, band broadening, van Deemter equation and curve. Column selection and optimization, column problems, solvents, trouble shooting, sample preparation.

UNIT-IV
i. Gas Chromatography: Principles, split-splitless injector, head space sampling, columns for GC, detectors, quantification, derivatization techniques.
ii. Hyphenated techniques: Introduction to GC-MS and LC-MS techniques and their applications.

UNIT-V
i. Electrophoresis: Capillary electrophoresis: Basic principle (zeta potential), instrumentation, different modes of CE, advantages and disadvantages, pharmaceutical applications.
ii. Counter current chromatography: Basic principles, droplet counter current chromatography, centrifugal partition chromatography, choice of solvents for SP and MP.

Outcome: The students should describe the separation techniques of chromatography (GC, HPLC) with principles, instrumentation, identification, development of methodology specific to the components of the mixture, including the method validation. The students should be able to explain the separation principles using the advanced techniques such as Flash chromatography and hyphenated techniques.

REFERENCES:
1. Instrumental Methods of Chemical Analysis by B.K Sharma
2. Organic spectroscopy by Y.R Sharma
3. A Text book of Pharmaceutical Analysis by Kerrenth A. Connors
4. Vogel’s Text book of Quantitative Chemical Analysis by A.I. Vogel
5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
6. Organic Chemistry by I. L. Finar
7. Organic spectroscopy by William Kemp
8. Quantitative Analysis of Drugs by D. C. Garrett
9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
10. Spectrophotometric identification of Organic Compounds by Silverstein
11. HPTLC by P.D. Seth
12. Methods in Biotechnology, Natural Product Isolation by Sarker, Latif, Gray
13. Methods in Biotechnology, Natural Product Isolation by Richard Canell
14. Various Reviews and Research Papers
Objective: This subject is to make the student achieve different parameters and factors that influence the dosage form design:

UNIT I

a. Preformulation studies: Goals of preformulation, preformulation parameters, methodology, solid state manipulation and characterization, solubility and partition coefficient, drug-excipient compatibility.
b. Advances in Pharmaceutical excipients. Excipients selection
c. Packaging development – selection of primary and secondary packaging materials and testing

UNIT II

Pharmaceutical unit operations: A detail study involving machinery and theory of pharmaceutical unit operations like mixing, filtration, drying, and sterilization.

UNIT III

Formulation development of solid and powder dosage forms: Improved production techniques for tablets, new materials, processes, equipment improvements, high shear mixers, compression machines, coating machines, coating techniques in tablet technology for product development and computerization for in process quality control of tablets. Formulation development and manufacture of powder dosage form for internal and external use including inhalation dosage forms.

UNIT IV

Formulation development of soft and hard gelatin capsules: Introduction, production and methods of manufacture, filling equipment and filling operations, formulations, finishing, special techniques, the nature of the capsule shell and capsule, advances in capsule manufacture, processing and control including pharmaceutical aspects, physical stability and packaging.

UNIT V

Optimization techniques in pharmaceutical formulation and processing: Introduction, optimization parameters, statistical design, response surface method, contour diagrams, factorial design, partial factorial design, simplex methods, mixture designs, Placket Burhan method, Box Benken method, applications in pharmaceutical formulation.

Outcome:
- Different machinery used for various steps in manufacture of various dosage forms.
- Formulation and evaluation of hard and soft gelatin capsules and their advantages over other dosage forms

TEXT BOOKS
1. Pharmaceutics - The Science of Dosage form design by ME Aulton.
6. Handbook of Pharmaceutical excipients

RECOMMENDED BOOKS:
1. The Theory and Practice of industrial Pharmacy by Leon Lachman, Herbert A. Lieberman.
2. Remington's Science and Practice of Pharmacy by A. Gennaro.
5. Dispensing for Pharmaceutical Students by SJ Carter.
List of experiments

1. Colorimetry / UV / Visible, Spectroscopy, scanning of few compounds for UV-absorption, calculation of Assay / content uniformity / % of drug release (2-3 experiments.)
2. Estimation of multi components formulation by UV of two different methods
3. Experiment base on HPLC (Isocratic and gradient) Techniques – (2 experiments)
4. Incompatibility studies, identification and functional groups – Determination by FTIR (2 experiments)
5. Separation and calculation of Rf values by using paper chromatography, TLC, HPTLC Technique (2-3 experiments)
6. Interpretation of spectra and structure determination of Mass Spectroscopy
7. Separation of protein drug substances by electrophoresis.
8. Workshop on IR and NMR interpretation
PHARMACEUTICAL MANAGEMENT LAB

Practical work shall be carried out based on the theory syllabus.